GPU Processors in
Databases (1)

MOLAP based on parallel scan

Krzysztof Kaczmarski

Warsaw University of Technology, Poland

November 2011

The following presentation is based on my three papers:

@ K. Kaczmarski. “Comparing GPU and CPU in OLAP Cubes
Creation”. In: SOFSEM. Ed. by Ivana Cerna et al.
Vol. 6543. Lecture Notes in Computer Science. Springer,
2011, pp. 308-319. ISBN: 978-3-642-18380-5

® K. Kaczmarski and T. Rudny. “MOLAP Cube Based on
Parallel Scan Algorithm”. In: ADBIS. Ed. by Johann Eder,
Maria Bielikova, and A Min Tjoa. Vol. 6909. Lecture Notes
in Computer Science. Springer, 2011, pp. 125-138. ISBN:
978-3-642-23736-2

® K. Kaczmarski. “Experimental B+-tree for GPU”. In: ADBIS
2011 Research Communications. Ed. by J. Eder,
M. Bielikova, and A.M. Tjoa. Osterreichische Computer
Gesellschaft, 2011, pp. 232—-240. ISBN: 978-3-85403-285-4

Outline of the lecture

Introduction

Flynn Taxonomy

Flynn Taxonomy

SISD Instruction Pool SIMD Instruction Pool

4.J

— —
o =}
<) 3
(=9 =N
3 3
« <
(=] a

Flynn Taxonomy

SISD Instruction Pool SIMD Instruction Pool

°
3
=}
o
&
a

el
2]
Data Pool

Ly
L
—LF
—L_

—
o
S
~
8
o}
A

Flynn Taxonomy

SISD Instruction Pool SIMD Instruction Pool

Data Pool

i)
3
[+}
o
&
a

MIMD Instruction Pool MISD Instruction Pool

—|—' U] —
—|—' PU B&
Bk
Lm-

= =
) =)
<) S
Ay =%
8 3
3 2
=] =]

Grid, Block and Threads

Grid

Block (0, 0) Block (1,0) | Block (2, 0)

Block (0, 1" Block (1, 1) | Block (2, 1)

Block (1, 1)

NVIDIA. CUDA whitepapers. www.nvidia.com/cuda

Outline of the lecture

GPU and MOLAP databases
Scan
MOLAP Cube based on scan primitives
Results
Summary

Motivation

¢ Increasing number of real time data

Motivation

¢ Increasing number of real time data

For Example

Motivation

¢ Increasing number of real time data
For Example

¢ Network content download statistics for CDN systems

Motivation

¢ Increasing number of real time data
For Example

¢ Network content download statistics for CDN systems
e 100 k new log entries / second

Motivation

¢ Increasing number of real time data
For Example

¢ Network content download statistics for CDN systems
e 100 k new log entries / second
o Expected to grow exponentially very soon

Motivation

¢ Increasing number of real time data
For Example

¢ Network content download statistics for CDN systems
e 100 k new log entries / second
o Expected to grow exponentially very soon

o Often unpredictable data dimensions resulting in more
expensive computations

Motivation

¢ Increasing number of real time data
For Example

¢ Network content download statistics for CDN systems
e 100 k new log entries / second
o Expected to grow exponentially very soon

o Often unpredictable data dimensions resulting in more
expensive computations

¢ Requirement to track changes of statistics in seconds

Motivation

¢ Increasing number of real time data
For Example

¢ Network content download statistics for CDN systems
e 100 k new log entries / second
o Expected to grow exponentially very soon

o Often unpredictable data dimensions resulting in more
expensive computations

¢ Requirement to track changes of statistics in seconds

¢ Limited budget for statistics gathering with increasing
demands

Motivation

¢ Increasing number of real time data
For Example

¢ Network content download statistics for CDN systems
e 100 k new log entries / second
o Expected to grow exponentially very soon

o Often unpredictable data dimensions resulting in more
expensive computations

¢ Requirement to track changes of statistics in seconds

¢ Limited budget for statistics gathering with increasing
demands

For Example

Motivation

¢ Increasing number of real time data
For Example

¢ Network content download statistics for CDN systems
e 100 k new log entries / second
o Expected to grow exponentially very soon

o Often unpredictable data dimensions resulting in more
expensive computations

e Requirement to track changes of statistics in seconds

¢ Limited budget for statistics gathering with increasing
demands

For Example

e Smaller machines favoured for big and expensive clusters

Motivation

¢ Increasing number of real time data
For Example

¢ Network content download statistics for CDN systems
e 100 k new log entries / second
o Expected to grow exponentially very soon

o Often unpredictable data dimensions resulting in more
expensive computations

e Requirement to track changes of statistics in seconds

¢ Limited budget for statistics gathering with increasing
demands

For Example

e Smaller machines favoured for big and expensive clusters
e Why not use GPUs ?

Why not use GPUs ?

Why not use GPUs ?

Control

NVIDIA, CUDA whitepapers

Why not use GPUs ?

1600
1400 +
1200 +
1000 +

800

flops

600
400

200
T T T T T T 1
2005 2007 2009 2011
GPU CPU

I I I
2001 2003

(Intel, NVIDIA specs.)

Why not use GPUs ?

e GPU needs dedicated programming

Why not use GPUs ?

e GPU needs dedicated programming
o CUDA is very close to C — “low learning curve”

Why not use GPUs ?

e GPU needs dedicated programming
o CUDA is very close to C — “low learning curve”
o Very few skilled developers

Why not use GPUs ?

e GPU needs dedicated programming

o CUDA is very close to C — “low learning curve”
o Very few skilled developers

¢ Tens thousands+ of developers and counting...

Why not use GPUs ?

e GPU needs dedicated programming
o CUDA is very close to C — “low learning curve”
o Very few skilled developers
¢ Tens thousands+ of developers and counting...
¢ Time consuming data copying from RAM to GPU

Why not use GPUs ?

e GPU needs dedicated programming
o CUDA is very close to C — “low learning curve”

o Very few skilled developers
¢ Tens thousands+ of developers and counting...

¢ Time consuming data copying from RAM to GPU
¢ Ongoing research on direct I/O operations.

Why not use GPUs ?

GPU needs dedicated programming
o CUDA is very close to C — “low learning curve”
Very few skilled developers
¢ Tens thousands+ of developers and counting...
Time consuming data copying from RAM to GPU
¢ Ongoing research on direct I/O operations.
Not all tasks may be implemented on GPU

Why not use GPUs ?

GPU needs dedicated programming
o CUDA is very close to C — “low learning curve”
Very few skilled developers
¢ Tens thousands+ of developers and counting...
Time consuming data copying from RAM to GPU
¢ Ongoing research on direct I/O operations.
Not all tasks may be implemented on GPU

¢ Yes, this is really hard.
We need a good parallel, separable and efficient algorithm.

GPU Programming

e Parallel primitives are good building blocks for robust and
scalable parallel algorithms.

GPU Programming

e Parallel primitives are good building blocks for robust and
scalable parallel algorithms.

e They automatically use all available cores as efficiently as
possible.

GPU Programming

e Parallel primitives are good building blocks for robust and
scalable parallel algorithms.

e They automatically use all available cores as efficiently as
possible.

e In this paper we:

GPU Programming

e Parallel primitives are good building blocks for robust and
scalable parallel algorithms.

e They automatically use all available cores as efficiently as
possible.

e In this paper we:
¢ Describe massively parallel algorithm of MOLAP cube
creation based on scan primitive

GPU Programming

e Parallel primitives are good building blocks for robust and
scalable parallel algorithms.

e They automatically use all available cores as efficiently as
possible.

e In this paper we:
¢ Describe massively parallel algorithm of MOLAP cube
creation based on scan primitive
o Evaluate its practical application

Prefix sums

Definition
The scan operation takes a binary associative operator ¢, and
an array of n elements [xo, X1, ..., X,—1], and returns the array

[XOa(XO@X1)7"'7(X0@X1 "'@an1)]'

The prescan operation takes a binary associative operator @
with identity /, and an array of n elements [x, X1, ..., Xp—1], and
returns the array

[/, X0, (X0 © X1), -, (X0 © X1 - - - © Xp_2)]-

Prefix sums

Definition
The scan operation takes a binary associative operator ¢, and
an array of n elements [xo, X1, ..., X,—1], and returns the array

[XOa(XO@X1)7"'7(X0@X1 "'@an1)]'

The prescan operation takes a binary associative operator @
with identity /, and an array of n elements [x, X1, ..., Xp—1], and
returns the array

[/, X0, (X0 © X1), -, (X0 © X1 - - - © Xp_2)]-
There are efficient CUDA based implementations with:

« step complexity O(log n)
o work complexity O(n)

Prescan example - pack operation

Prescan example - pack operation

A
5

‘ 6 3 4
[0 [oo
prescan(F) [O 0 0

| 2
| COR T

Al 6 | 3] 4] 8 [1

Prescan example - pack operation

1

F[0 o

2

pack(AF)[8 [1

Prescan example - pack operation

Al 6 [8] 4[]8 [1 [2] 4]2 |
F[o [ORNNCEEERENNT | 0 [0 [1 |
prescan(F)[0 [0 | 0 | ‘ P2 | 2 ‘
packAF)[8 | 1 | 2 | | | | | |

There is also a version of scan for segments defined by flags:

Prescan example - pack operation

8

i

2

4

1

1

0

0

prescan(F)

2

2

pack(A,F)

6
0
0
8

—=|| O] O|| W

N Ol O| &

There is also a version of scan for segments defined by flags:

Al

6

3

4

8

1

2

4

F

1

0

1

0

0

0

0

Prescan example - pack operation

Al 6 [8] 4[]8 [1 [2] 4] |
Fl o [ORI | 0 [0 | |
prescan(F)[0 [0 | 0 | ‘ P2 | 2 ‘
packAF)[8 | 1 | 2 | | | | | |

There is also a version of scan for segments defined by flags:

ARG [3 | AEER] L [2 | 4] |
F[1 [O Jui /R O0] 0 [0 | |
seg-scan(A,F) \ ‘ 9 ‘ ‘ 12 ‘ 13 ‘ 15 ‘ 19 ‘ ‘

Applications of prefix sums primitive

e Computation of minimum, maximum, average, etc. of an
array

¢ Lexical comparison of strings of characters

e Addition of multi-precision numbers that cannot be
represented in a single machine word

¢ Evaluation of polynomials

e Solving of recurrence equations

e Radix sort

e Quick sort

e Solving tridiagonal linear systems

¢ Removal of marked elements from an array

e Dynamical allocation of processors

¢ Lexical analysis (parsing into tokens)

e Searching for regular expressions

e Implementation of some tree operations

e and many more...

Dense representation GPU optimised

do di mo

o (2008| 10 | 23

1 (2008]| 12 5

T2 12008 12 | 43

73 [2008| 15 | 8
74 (2009| 15 | 90
75 12009 17 | 21
76 (2009 19 | 3
r7 [(2009| 19 | 3

Dense representation GPU optimised

do di1 mo 2008 2009

o (2008| 10 | 23 10 1 23 0
1 (2008]| 12 5 il 0 0
T2 12008 12 | 43 121 48 0
T3 |2008| 15 8 13 0] 0
T4 12009 15 | 90 g4l 0 0
5 12009| 17 21 15 8 90
76 2009| 19 | 3 16 | o0l S
7 [2009]| 19 3 17 0 21

18 0 0

=9 0 6

Dense representation GPU optimised

do di1 mo 2008 2009 h c

o (2008| 10 | 23 10 1 23 0 0 PE]
1 (2008]| 12 5 il 0 0 2 48
T2 12008 12 | 43 121 48 0 5 8
3 12008| 15 8 13 0 0 15 90
T4 12009 15 | 90 14 0] 0 17 | 21
5 12009| 17 21 15 8 90 19 6
76 2009| 19 | 3 16 | o0l S
7 [2009]| 19 3 17 0 21

18 0 0

=9 0 6

Creation Algorithm Idea

do di d2 d3 dg mo
ro |2008| 10 | 04 |190| 6 | 23
71 12008| 10 | 04 |190| 6 | 5
r2 12008 10 | 04 [190| 6 | 43
73 |2008| 10 | 04 [190| 6 | 8
r4 |2008| 10 | 04 [190| 8 | 90
75 |2008| 10 | 04 |190| 8 | 21
76 |12008| 10 | 05 |164| 4 | 3
77 |2008| 10 | 05 [164| 4 | 3

Creation Algorithm Idea

do d1 d2 d3 dg mo f
ro |2008| 10 | 04 |190| 6 | 23 1
71 12008| 10 | 04 |190| 6 | 5 0
r2 12008 10 | 04 [190| 6 | 43 0
73 |2008| 10 | 04 [190| 6 | 8 0
r4 |2008| 10 | 04 [190| 8 | 90 1
75 |2008| 10 | 04 |190| 8 | 21 0
76 |12008| 10 | 05 |164| 4 | 3 1
77 |2008| 10 | 05 [164| 4 | 3 0

Creation Algorithm Idea

7O

T1

3
T4
5
76

do di d2 d3 d4 mo f ps_f
2008| 10 04 (190 | 6 23 1 0]
2008| 10 04 (190 | 6 5 0 1
2008| 10 04 [190| 6 LX) 0 1
2008| 10 04 [190| 6 8 0] 1
2008| 10 04 (190 | 8 90 1 1
2008| 10 04 | 190 8 21 0 2
2008| 10 05 (164 | 4 3 1 2
2008| 10 05 (164 | 4 3 0 3

Creation Algorithm Idea

7O

T1

3
T4
5
76

do di d2 d3 d4 mo f ps_f iss_fmo
2008| 10 04 (190 | 6 23 1 0] 79
2008| 10 04 (190 | 6 5 0 1 56
2008| 10 04 [190| 6 LX) 0 1 51"
2008| 10 04 [190| 6 8 0] 1 8
2008| 10 04 (190 | 8 90 1 1 111
2008| 10 04 | 190 8 21 0] 2 21
2008| 10 05 (164 | 4 3 1 2 [
2008| 10 05 (164 | 4 3 0 3 3

Creation Algorithm Idea

7O

T1

3
T4
5
76

do d1 d2 d3 d4 mo f ps_f iss_fmo h c
2008| 10 | 04 | 190 | 6 23 1 0 79 132 | 79
2008| 10 | 04 | 190 | 6) 0 1 56 134 | 111
2008| 10 | 04 | 190 | 6 43 0 1 ik 135(6
2008| 10 | 04 | 190 | 6 8 0 1 8
2008| 10 | 04 | 190 | 8 90 1 1 111
2008| 10 | 04 | 190 | 8 21 0 2 21
2008| 10 | 05 | 164 | 4 3 i 2 6
2008| 10 | 05 | 164 | 4 S 0 3 5

co

C18

c2

Brute Querying Algorithm Idea (max)

€0 1132 79

¢l 1134|111

€2 1135 6
€3 | 137 | 15
¢4 | 190 | 98

€5 1196 | 4

Brute Querying Algorithm Idea (max)

€0 1132 79

¢l 1134|111

o|lr|o|lr|o|r]| =

€2 1135 6
€3 | 137 | 15
¢4 | 190 | 98
¢5 196 | 4

Brute Querying Algorithm Idea (max)

f p
co [132| 79 1 79
ct 134|111 0 6
2 [135(6 1 98
3 [137 | 15 0
c4 (190 | 98 1
5 196 | 4 0

Brute Querying Algorithm Idea (max)

f p r
co [132| 79 1 79 98
ct 134|111 0 6
2 [135(6 1 98
3 [137 | 15 0
c4 (190 | 98 1
5 196 | 4 0

Results — Cube Creation Time

time [ms]

Processing time for 5, 10 and 15 dimensions.

140
120 -
100 -
80 |

60 |

40

Z

20

_-®
_-
//,‘/’ n
e b —
&
—/ - s
- [] _ .-
- -
<~ n = /Q
—
-— .

0
0

T T T
400000

T T T T T T T 1
800000 1200000 1600000 2000000
size of database

Results — Good scalability

Processing time of 2.000.000 records.

140

120
100:
80
60

sl W5
N 10
M 15

e . -

40 —
20 —
dimensions measures

[ms]

0

Conclusions

We achieved:
 Ultra-fast cube creation and querying.

Conclusions

We achieved:
 Ultra-fast cube creation and querying.

o Scalability much better than in classical CPU based
implementations.

Conclusions

We achieved:
 Ultra-fast cube creation and querying.

o Scalability much better than in classical CPU based
implementations.

 Very general solution due to common scan
implementation.

Conclusions

We achieved:
 Ultra-fast cube creation and querying.

o Scalability much better than in classical CPU based
implementations.

 Very general solution due to common scan
implementation.

« Ability to incrementally modify existing cubes.

Conclusions

We achieved:
 Ultra-fast cube creation and querying.

o Scalability much better than in classical CPU based
implementations.

 Very general solution due to common scan
implementation.

« Ability to incrementally modify existing cubes.

Conclusions

We achieved:
 Ultra-fast cube creation and querying.

o Scalability much better than in classical CPU based
implementations.

 Very general solution due to common scan
implementation.

« Ability to incrementally modify existing cubes.
Problems:
¢ Memory consumption

Conclusions

We achieved:
 Ultra-fast cube creation and querying.

o Scalability much better than in classical CPU based
implementations.

 Very general solution due to common scan
implementation.

« Ability to incrementally modify existing cubes.
Problems:

¢ Memory consumption

¢ cudpp library still under development (may speed up)

Future steps

¢ Reduce instead of scan — further speed-up

Future steps

¢ Reduce instead of scan — further speed-up
¢ Query Engine Improvement

Future steps

¢ Reduce instead of scan — further speed-up
e Query Engine Improvement
¢ A new query language designed for vector processing

Future steps

¢ Reduce instead of scan — further speed-up
e Query Engine Improvement
¢ A new query language designed for vector processing

e Multiple GPU device implementation — horizontal data
distribution

Thank you.

	Introduction
	GPU and MOLAP databases
	Scan
	MOLAP Cube based on scan primitives
	Results
	Summary

