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Grid, Block and Threads
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Why not use GPUs ?

GPU needs dedicated programming
o CUDA is very close to C — “low learning curve”
Very few skilled developers
¢ Tens thousands+ of developers and counting...
Time consuming data copying from RAM to GPU
¢ Ongoing research on direct I/O operations.
Not all tasks may be implemented on GPU

¢ Yes, this is really hard.
We need a good parallel, separable and efficient algorithm.
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GPU Programming

e Parallel primitives are good building blocks for robust and
scalable parallel algorithms.

e They automatically use all available cores as efficiently as
possible.

e In this paper we:
¢ Describe massively parallel algorithm of MOLAP cube
creation based on scan primitive
o Evaluate its practical application
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Prefix sums

Definition
The scan operation takes a binary associative operator ¢, and
an array of n elements [xo, X1, ..., X,—1], and returns the array

[XOa(XO@X1)7"'7(X0@X1 "'@an1)]'

The prescan operation takes a binary associative operator @
with identity /, and an array of n elements [x, X1, ..., Xp—1], and
returns the array

[/, X0, (X0 © X1), -, (X0 © X1 - - - © Xp_2)]-
There are efficient CUDA based implementations with:

« step complexity O(log n)
o work complexity O(n)
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Prescan example - pack operation

Al 6 [ 8 ] 4[]8 [ 1 [ 2] 4 ] |
Fl o [ ORI | 0 [ 0 | |
prescan(F)[ 0 [ 0 | 0 | ‘ P2 | 2 ‘
packAF)[ 8 | 1 | 2 | | | | | |

There is also a version of scan for segments defined by flags:

ARG [ 3 | AEER] L [ 2 | 4 ] |
F[ 1 [ O Jui /R O0] 0 [ 0 | |
seg-scan(A,F) \ ‘ 9 ‘ ‘ 12 ‘ 13 ‘ 15 ‘ 19 ‘ ‘




Applications of prefix sums primitive

e Computation of minimum, maximum, average, etc. of an
array

¢ Lexical comparison of strings of characters

e Addition of multi-precision numbers that cannot be
represented in a single machine word

¢ Evaluation of polynomials

e Solving of recurrence equations

e Radix sort

e Quick sort

e Solving tridiagonal linear systems

¢ Removal of marked elements from an array

e Dynamical allocation of processors

¢ Lexical analysis (parsing into tokens)

e Searching for regular expressions

e Implementation of some tree operations

e and many more...
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do di1 mo 2008 2009 h c
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do d1 d2 d3 dg mo f
ro |2008| 10 | 04 |190| 6 | 23 1
71 12008| 10 | 04 |190| 6 | 5 0
r2 12008 10 | 04 [190| 6 | 43 0
73 |2008| 10 | 04 [190| 6 | 8 0
r4 |2008| 10 | 04 [190| 8 | 90 1
75 |2008| 10 | 04 |190| 8 | 21 0
76 |12008| 10 | 05 |164| 4 | 3 1
77 |2008| 10 | 05 [164| 4 | 3 0
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Brute Querying Algorithm Idea (max)
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Results — Cube Creation Time

time [ms]

Processing time for 5, 10 and 15 dimensions.
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Results — Good scalability

Processing time of 2.000.000 records.
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Conclusions

We achieved:
 Ultra-fast cube creation and querying.

o Scalability much better than in classical CPU based
implementations.

 Very general solution due to common scan
implementation.

« Ability to incrementally modify existing cubes.
Problems:

¢ Memory consumption

¢ cudpp library still under development (may speed up)
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Future steps

¢ Reduce instead of scan — further speed-up
e Query Engine Improvement
¢ A new query language designed for vector processing

e Multiple GPU device implementation — horizontal data
distribution



Thank you.
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