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• GPU needs dedicated programming

• CUDA is very close to C – “low learning curve”
• Very few skilled developers

• Tens thousands+ of developers and counting...

• Time consuming data copying from RAM to GPU

• Ongoing research on direct I/O operations.

• Not all tasks may be implemented on GPU

• Yes, this is really hard.
We need a good parallel, separable and efficient algorithm.
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GPU Programming

• Parallel primitives are good building blocks for robust and
scalable parallel algorithms.

• They automatically use all available cores as efficiently as
possible.

• In this paper we:

• Describe massively parallel algorithm of MOLAP cube
creation based on scan primitive

• Evaluate its practical application
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Prefix sums
Definition
The scan operation takes a binary associative operator ⊕, and
an array of n elements [x0, x1, . . . , xn−1], and returns the array

[x0, (x0 ⊕ x1), . . . , (x0 ⊕ x1 · · · ⊕ xn−1)].

The prescan operation takes a binary associative operator ⊕
with identity I, and an array of n elements [x0, x1, . . . , xn−1], and
returns the array

[I, x0, (x0 ⊕ x1), . . . , (x0 ⊕ x1 · · · ⊕ xn−2)].

There are efficient CUDA based implementations with:
• step complexity O(log n)
• work complexity O(n)



Prefix sums
Definition
The scan operation takes a binary associative operator ⊕, and
an array of n elements [x0, x1, . . . , xn−1], and returns the array

[x0, (x0 ⊕ x1), . . . , (x0 ⊕ x1 · · · ⊕ xn−1)].

The prescan operation takes a binary associative operator ⊕
with identity I, and an array of n elements [x0, x1, . . . , xn−1], and
returns the array

[I, x0, (x0 ⊕ x1), . . . , (x0 ⊕ x1 · · · ⊕ xn−2)].

There are efficient CUDA based implementations with:
• step complexity O(log n)
• work complexity O(n)



Prescan example - pack operation

A 6 3 4 8 1 2 4 2

F 0 0 0 1 1 0 0 1

prescan(F) 0 0 0 0 1 2 2 2

pack(A,F) 8 1 2

There is also a version of scan for segments defined by flags:
A 6 3 4 8 1 2 4 2

F 1 0 1 0 0 0 0 1

seg-scan(A,F) 6 9 4 12 13 15 19 2
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Applications of prefix sums primitive
• Computation of minimum, maximum, average, etc. of an

array
• Lexical comparison of strings of characters
• Addition of multi-precision numbers that cannot be

represented in a single machine word
• Evaluation of polynomials
• Solving of recurrence equations
• Radix sort
• Quick sort
• Solving tridiagonal linear systems
• Removal of marked elements from an array
• Dynamical allocation of processors
• Lexical analysis (parsing into tokens)
• Searching for regular expressions
• Implementation of some tree operations
• and many more...
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Results – Cube Creation Time

Processing time for 5, 10 and 15 dimensions.
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Results – Good scalability

Processing time of 2.000.000 records.
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Conclusions

We achieved:
• Ultra-fast cube creation and querying.

• Scalability much better than in classical CPU based
implementations.

• Very general solution due to common scan
implementation.

• Ability to incrementally modify existing cubes.
Problems:

• Memory consumption
• cudpp library still under development (may speed up)
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Thank you.
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