
GPU Processors in
Databases (1)
MOLAP based on parallel scan

Krzysztof Kaczmarski

Warsaw University of Technology, Poland

November 2011



The following presentation is based on my three papers:
1 K. Kaczmarski. “Comparing GPU and CPU in OLAP Cubes

Creation”. In: SOFSEM. Ed. by Ivana Cerná et al.
Vol. 6543. Lecture Notes in Computer Science. Springer,
2011, pp. 308–319. ISBN: 978-3-642-18380-5

2 K. Kaczmarski and T. Rudny. “MOLAP Cube Based on
Parallel Scan Algorithm”. In: ADBIS. Ed. by Johann Eder,
Mária Bieliková, and A Min Tjoa. Vol. 6909. Lecture Notes
in Computer Science. Springer, 2011, pp. 125–138. ISBN:
978-3-642-23736-2

3 K. Kaczmarski. “Experimental B+-tree for GPU”. In: ADBIS
2011 Research Communications. Ed. by J. Eder,
M. Bielikova, and A.M. Tjoa. Österreichische Computer
Gesellschaft, 2011, pp. 232–240. ISBN: 978-3-85403-285-4



Outline of the lecture

Introduction

GPU and MOLAP databases
Scan
MOLAP Cube based on scan primitives
Results
Summary



Flynn Taxonomy



Flynn Taxonomy



Flynn Taxonomy



Flynn Taxonomy



Grid, Block and Threads

NVIDIA. CUDA whitepapers. www.nvidia.com/cuda



Outline of the lecture

Introduction

GPU and MOLAP databases
Scan
MOLAP Cube based on scan primitives
Results
Summary



Motivation
• Increasing number of real time data

For Example

• Network content download statistics for CDN systems
• 100 k new log entries / second
• Expected to grow exponentially very soon

• Often unpredictable data dimensions resulting in more
expensive computations

• Requirement to track changes of statistics in seconds
• Limited budget for statistics gathering with increasing

demands

For Example

• Smaller machines favoured for big and expensive clusters
• Why not use GPUs ?



Motivation
• Increasing number of real time data

For Example

• Network content download statistics for CDN systems
• 100 k new log entries / second
• Expected to grow exponentially very soon

• Often unpredictable data dimensions resulting in more
expensive computations

• Requirement to track changes of statistics in seconds
• Limited budget for statistics gathering with increasing

demands

For Example

• Smaller machines favoured for big and expensive clusters
• Why not use GPUs ?



Motivation
• Increasing number of real time data

For Example

• Network content download statistics for CDN systems

• 100 k new log entries / second
• Expected to grow exponentially very soon

• Often unpredictable data dimensions resulting in more
expensive computations

• Requirement to track changes of statistics in seconds
• Limited budget for statistics gathering with increasing

demands

For Example

• Smaller machines favoured for big and expensive clusters
• Why not use GPUs ?



Motivation
• Increasing number of real time data

For Example

• Network content download statistics for CDN systems
• 100 k new log entries / second

• Expected to grow exponentially very soon

• Often unpredictable data dimensions resulting in more
expensive computations

• Requirement to track changes of statistics in seconds
• Limited budget for statistics gathering with increasing

demands

For Example

• Smaller machines favoured for big and expensive clusters
• Why not use GPUs ?



Motivation
• Increasing number of real time data

For Example

• Network content download statistics for CDN systems
• 100 k new log entries / second
• Expected to grow exponentially very soon

• Often unpredictable data dimensions resulting in more
expensive computations

• Requirement to track changes of statistics in seconds
• Limited budget for statistics gathering with increasing

demands

For Example

• Smaller machines favoured for big and expensive clusters
• Why not use GPUs ?



Motivation
• Increasing number of real time data

For Example

• Network content download statistics for CDN systems
• 100 k new log entries / second
• Expected to grow exponentially very soon

• Often unpredictable data dimensions resulting in more
expensive computations

• Requirement to track changes of statistics in seconds
• Limited budget for statistics gathering with increasing

demands

For Example

• Smaller machines favoured for big and expensive clusters
• Why not use GPUs ?



Motivation
• Increasing number of real time data

For Example

• Network content download statistics for CDN systems
• 100 k new log entries / second
• Expected to grow exponentially very soon

• Often unpredictable data dimensions resulting in more
expensive computations

• Requirement to track changes of statistics in seconds

• Limited budget for statistics gathering with increasing
demands

For Example

• Smaller machines favoured for big and expensive clusters
• Why not use GPUs ?



Motivation
• Increasing number of real time data

For Example

• Network content download statistics for CDN systems
• 100 k new log entries / second
• Expected to grow exponentially very soon

• Often unpredictable data dimensions resulting in more
expensive computations

• Requirement to track changes of statistics in seconds
• Limited budget for statistics gathering with increasing

demands

For Example

• Smaller machines favoured for big and expensive clusters
• Why not use GPUs ?



Motivation
• Increasing number of real time data

For Example

• Network content download statistics for CDN systems
• 100 k new log entries / second
• Expected to grow exponentially very soon

• Often unpredictable data dimensions resulting in more
expensive computations

• Requirement to track changes of statistics in seconds
• Limited budget for statistics gathering with increasing

demands

For Example

• Smaller machines favoured for big and expensive clusters
• Why not use GPUs ?



Motivation
• Increasing number of real time data

For Example

• Network content download statistics for CDN systems
• 100 k new log entries / second
• Expected to grow exponentially very soon

• Often unpredictable data dimensions resulting in more
expensive computations

• Requirement to track changes of statistics in seconds
• Limited budget for statistics gathering with increasing

demands

For Example

• Smaller machines favoured for big and expensive clusters

• Why not use GPUs ?



Motivation
• Increasing number of real time data

For Example

• Network content download statistics for CDN systems
• 100 k new log entries / second
• Expected to grow exponentially very soon

• Often unpredictable data dimensions resulting in more
expensive computations

• Requirement to track changes of statistics in seconds
• Limited budget for statistics gathering with increasing

demands

For Example

• Smaller machines favoured for big and expensive clusters
• Why not use GPUs ?



Why not use GPUs ?



Why not use GPUs ?

NVIDIA, CUDA whitepapers



Why not use GPUs ?

(Intel, NVIDIA specs.)



Why not use GPUs ?

• GPU needs dedicated programming

• CUDA is very close to C – “low learning curve”
• Very few skilled developers

• Tens thousands+ of developers and counting...

• Time consuming data copying from RAM to GPU

• Ongoing research on direct I/O operations.

• Not all tasks may be implemented on GPU

• Yes, this is really hard.
We need a good parallel, separable and efficient algorithm.



Why not use GPUs ?

• GPU needs dedicated programming
• CUDA is very close to C – “low learning curve”

• Very few skilled developers

• Tens thousands+ of developers and counting...

• Time consuming data copying from RAM to GPU

• Ongoing research on direct I/O operations.

• Not all tasks may be implemented on GPU

• Yes, this is really hard.
We need a good parallel, separable and efficient algorithm.



Why not use GPUs ?

• GPU needs dedicated programming
• CUDA is very close to C – “low learning curve”

• Very few skilled developers

• Tens thousands+ of developers and counting...
• Time consuming data copying from RAM to GPU

• Ongoing research on direct I/O operations.

• Not all tasks may be implemented on GPU

• Yes, this is really hard.
We need a good parallel, separable and efficient algorithm.



Why not use GPUs ?

• GPU needs dedicated programming
• CUDA is very close to C – “low learning curve”

• Very few skilled developers
• Tens thousands+ of developers and counting...

• Time consuming data copying from RAM to GPU

• Ongoing research on direct I/O operations.

• Not all tasks may be implemented on GPU

• Yes, this is really hard.
We need a good parallel, separable and efficient algorithm.



Why not use GPUs ?

• GPU needs dedicated programming
• CUDA is very close to C – “low learning curve”

• Very few skilled developers
• Tens thousands+ of developers and counting...

• Time consuming data copying from RAM to GPU

• Ongoing research on direct I/O operations.
• Not all tasks may be implemented on GPU

• Yes, this is really hard.
We need a good parallel, separable and efficient algorithm.



Why not use GPUs ?

• GPU needs dedicated programming
• CUDA is very close to C – “low learning curve”

• Very few skilled developers
• Tens thousands+ of developers and counting...

• Time consuming data copying from RAM to GPU
• Ongoing research on direct I/O operations.

• Not all tasks may be implemented on GPU

• Yes, this is really hard.
We need a good parallel, separable and efficient algorithm.



Why not use GPUs ?

• GPU needs dedicated programming
• CUDA is very close to C – “low learning curve”

• Very few skilled developers
• Tens thousands+ of developers and counting...

• Time consuming data copying from RAM to GPU
• Ongoing research on direct I/O operations.

• Not all tasks may be implemented on GPU

• Yes, this is really hard.
We need a good parallel, separable and efficient algorithm.



Why not use GPUs ?

• GPU needs dedicated programming
• CUDA is very close to C – “low learning curve”

• Very few skilled developers
• Tens thousands+ of developers and counting...

• Time consuming data copying from RAM to GPU
• Ongoing research on direct I/O operations.

• Not all tasks may be implemented on GPU
• Yes, this is really hard.

We need a good parallel, separable and efficient algorithm.



GPU Programming

• Parallel primitives are good building blocks for robust and
scalable parallel algorithms.

• They automatically use all available cores as efficiently as
possible.

• In this paper we:

• Describe massively parallel algorithm of MOLAP cube
creation based on scan primitive

• Evaluate its practical application



GPU Programming

• Parallel primitives are good building blocks for robust and
scalable parallel algorithms.

• They automatically use all available cores as efficiently as
possible.

• In this paper we:

• Describe massively parallel algorithm of MOLAP cube
creation based on scan primitive

• Evaluate its practical application



GPU Programming

• Parallel primitives are good building blocks for robust and
scalable parallel algorithms.

• They automatically use all available cores as efficiently as
possible.

• In this paper we:

• Describe massively parallel algorithm of MOLAP cube
creation based on scan primitive

• Evaluate its practical application



GPU Programming

• Parallel primitives are good building blocks for robust and
scalable parallel algorithms.

• They automatically use all available cores as efficiently as
possible.

• In this paper we:
• Describe massively parallel algorithm of MOLAP cube

creation based on scan primitive

• Evaluate its practical application



GPU Programming

• Parallel primitives are good building blocks for robust and
scalable parallel algorithms.

• They automatically use all available cores as efficiently as
possible.

• In this paper we:
• Describe massively parallel algorithm of MOLAP cube

creation based on scan primitive
• Evaluate its practical application



Prefix sums
Definition
The scan operation takes a binary associative operator ⊕, and
an array of n elements [x0, x1, . . . , xn−1], and returns the array

[x0, (x0 ⊕ x1), . . . , (x0 ⊕ x1 · · · ⊕ xn−1)].

The prescan operation takes a binary associative operator ⊕
with identity I, and an array of n elements [x0, x1, . . . , xn−1], and
returns the array

[I, x0, (x0 ⊕ x1), . . . , (x0 ⊕ x1 · · · ⊕ xn−2)].

There are efficient CUDA based implementations with:
• step complexity O(log n)
• work complexity O(n)



Prefix sums
Definition
The scan operation takes a binary associative operator ⊕, and
an array of n elements [x0, x1, . . . , xn−1], and returns the array

[x0, (x0 ⊕ x1), . . . , (x0 ⊕ x1 · · · ⊕ xn−1)].

The prescan operation takes a binary associative operator ⊕
with identity I, and an array of n elements [x0, x1, . . . , xn−1], and
returns the array

[I, x0, (x0 ⊕ x1), . . . , (x0 ⊕ x1 · · · ⊕ xn−2)].

There are efficient CUDA based implementations with:
• step complexity O(log n)
• work complexity O(n)



Prescan example - pack operation

A 6 3 4 8 1 2 4 2

F 0 0 0 1 1 0 0 1

prescan(F) 0 0 0 0 1 2 2 2

pack(A,F) 8 1 2

There is also a version of scan for segments defined by flags:
A 6 3 4 8 1 2 4 2

F 1 0 1 0 0 0 0 1

seg-scan(A,F) 6 9 4 12 13 15 19 2



Prescan example - pack operation

A 6 3 4 8 1 2 4 2

F 0 0 0 1 1 0 0 1

prescan(F) 0 0 0 0 1 2 2 2

pack(A,F) 8 1 2

There is also a version of scan for segments defined by flags:
A 6 3 4 8 1 2 4 2

F 1 0 1 0 0 0 0 1

seg-scan(A,F) 6 9 4 12 13 15 19 2



Prescan example - pack operation

A 6 3 4 8 1 2 4 2

F 0 0 0 1 1 0 0 1

prescan(F) 0 0 0 0 1 2 2 2

pack(A,F) 8 1 2

There is also a version of scan for segments defined by flags:
A 6 3 4 8 1 2 4 2

F 1 0 1 0 0 0 0 1

seg-scan(A,F) 6 9 4 12 13 15 19 2



Prescan example - pack operation

A 6 3 4 8 1 2 4 2

F 0 0 0 1 1 0 0 1

prescan(F) 0 0 0 0 1 2 2 2

pack(A,F) 8 1 2

There is also a version of scan for segments defined by flags:

A 6 3 4 8 1 2 4 2

F 1 0 1 0 0 0 0 1

seg-scan(A,F) 6 9 4 12 13 15 19 2



Prescan example - pack operation

A 6 3 4 8 1 2 4 2

F 0 0 0 1 1 0 0 1

prescan(F) 0 0 0 0 1 2 2 2

pack(A,F) 8 1 2

There is also a version of scan for segments defined by flags:
A 6 3 4 8 1 2 4 2

F 1 0 1 0 0 0 0 1

seg-scan(A,F) 6 9 4 12 13 15 19 2



Prescan example - pack operation

A 6 3 4 8 1 2 4 2

F 0 0 0 1 1 0 0 1

prescan(F) 0 0 0 0 1 2 2 2

pack(A,F) 8 1 2

There is also a version of scan for segments defined by flags:
A 6 3 4 8 1 2 4 2

F 1 0 1 0 0 0 0 1

seg-scan(A,F) 6 9 4 12 13 15 19 2



Applications of prefix sums primitive
• Computation of minimum, maximum, average, etc. of an

array
• Lexical comparison of strings of characters
• Addition of multi-precision numbers that cannot be

represented in a single machine word
• Evaluation of polynomials
• Solving of recurrence equations
• Radix sort
• Quick sort
• Solving tridiagonal linear systems
• Removal of marked elements from an array
• Dynamical allocation of processors
• Lexical analysis (parsing into tokens)
• Searching for regular expressions
• Implementation of some tree operations
• and many more...



Dense representation GPU optimised



Dense representation GPU optimised



Dense representation GPU optimised



Creation Algorithm Idea



Creation Algorithm Idea



Creation Algorithm Idea



Creation Algorithm Idea



Creation Algorithm Idea



Brute Querying Algorithm Idea (max)



Brute Querying Algorithm Idea (max)



Brute Querying Algorithm Idea (max)



Brute Querying Algorithm Idea (max)



Results – Cube Creation Time

Processing time for 5, 10 and 15 dimensions.

0 400000 800000 1200000 1600000 2000000

size of database

0

20

40

60

80

100

120

140

ti
m

e
 [

m
s]



Results – Good scalability

Processing time of 2.000.000 records.

dimensions measures
0

20

40

60

80

100

120

140

[m
s] 5

10
15



Conclusions

We achieved:
• Ultra-fast cube creation and querying.

• Scalability much better than in classical CPU based
implementations.

• Very general solution due to common scan
implementation.

• Ability to incrementally modify existing cubes.
Problems:

• Memory consumption
• cudpp library still under development (may speed up)



Conclusions

We achieved:
• Ultra-fast cube creation and querying.
• Scalability much better than in classical CPU based

implementations.

• Very general solution due to common scan
implementation.

• Ability to incrementally modify existing cubes.
Problems:

• Memory consumption
• cudpp library still under development (may speed up)



Conclusions

We achieved:
• Ultra-fast cube creation and querying.
• Scalability much better than in classical CPU based

implementations.
• Very general solution due to common scan

implementation.

• Ability to incrementally modify existing cubes.
Problems:

• Memory consumption
• cudpp library still under development (may speed up)



Conclusions

We achieved:
• Ultra-fast cube creation and querying.
• Scalability much better than in classical CPU based

implementations.
• Very general solution due to common scan

implementation.
• Ability to incrementally modify existing cubes.

Problems:

• Memory consumption
• cudpp library still under development (may speed up)



Conclusions

We achieved:
• Ultra-fast cube creation and querying.
• Scalability much better than in classical CPU based

implementations.
• Very general solution due to common scan

implementation.
• Ability to incrementally modify existing cubes.

Problems:

• Memory consumption
• cudpp library still under development (may speed up)



Conclusions

We achieved:
• Ultra-fast cube creation and querying.
• Scalability much better than in classical CPU based

implementations.
• Very general solution due to common scan

implementation.
• Ability to incrementally modify existing cubes.

Problems:
• Memory consumption

• cudpp library still under development (may speed up)



Conclusions

We achieved:
• Ultra-fast cube creation and querying.
• Scalability much better than in classical CPU based

implementations.
• Very general solution due to common scan

implementation.
• Ability to incrementally modify existing cubes.

Problems:
• Memory consumption
• cudpp library still under development (may speed up)



Future steps

• Reduce instead of scan→ further speed-up

• Query Engine Improvement

• A new query language designed for vector processing

• Multiple GPU device implementation→ horizontal data
distribution



Future steps

• Reduce instead of scan→ further speed-up
• Query Engine Improvement

• A new query language designed for vector processing

• Multiple GPU device implementation→ horizontal data
distribution



Future steps

• Reduce instead of scan→ further speed-up
• Query Engine Improvement

• A new query language designed for vector processing

• Multiple GPU device implementation→ horizontal data
distribution



Future steps

• Reduce instead of scan→ further speed-up
• Query Engine Improvement

• A new query language designed for vector processing

• Multiple GPU device implementation→ horizontal data
distribution



Thank you.


	Introduction
	GPU and MOLAP databases
	Scan
	MOLAP Cube based on scan primitives
	Results
	Summary


