GPU Processors in Databases (1)

MOLAP based on parallel scan

Krzysztof Kaczmarski

Warsaw University of Technology, Poland

November 2011

The following presentation is based on my three papers:

- K. Kaczmarski. "Comparing GPU and CPU in OLAP Cubes Creation". In: SOFSEM. Ed. by Ivana Cerná et al. Vol. 6543. Lecture Notes in Computer Science. Springer, 2011, pp. 308–319. ISBN: 978-3-642-18380-5
- K. Kaczmarski and T. Rudny. "MOLAP Cube Based on Parallel Scan Algorithm". In: *ADBIS*. Ed. by Johann Eder, Mária Bieliková, and A Min Tjoa. Vol. 6909. Lecture Notes in Computer Science. Springer, 2011, pp. 125–138. ISBN: 978-3-642-23736-2
- K. Kaczmarski. "Experimental B+-tree for GPU". In: ADBIS 2011 Research Communications. Ed. by J. Eder,
 M. Bielikova, and A.M. Tjoa. Österreichische Computer Gesellschaft, 2011, pp. 232–240. ISBN: 978-3-85403-285-4

Outline of the lecture

Introduction

GPU and MOLAP databases Scan MOLAP Cube based on scan primitives Results Summary

Grid, Block and Threads

	Block (1, 1)								
	Thread (0, 0)	Thread (1, 0)	Thread (2, 0)	Thread (3, 0)					
	~~~~	~~~~	~~~~						
	Thread (0, 1)	Thread (1, 1)	Thread (2, 1)	Thread (3, 1)					
	~~~~	~~~*	~~~						
	Thread (0, 2)	Thread (1, 2)	Thread (2, 2)	Thread (3, 2)					
į	4	¥	¥						

NVIDIA. CUDA whitepapers. www.nvidia.com/cuda

Outline of the lecture

Introduction

GPU and MOLAP databases Scan MOLAP Cube based on scan primitives Results Summary

Increasing number of real time data

- Increasing number of real time data
- For Example

- Increasing number of real time data
- For Example
 - Network content download statistics for CDN systems

• Increasing number of real time data

- Network content download statistics for CDN systems
- 100 k new log entries / second

• Increasing number of real time data

- Network content download statistics for CDN systems
- 100 k new log entries / second
- Expected to grow exponentially very soon

• Increasing number of real time data

- Network content download statistics for CDN systems
- 100 k new log entries / second
- Expected to grow exponentially very soon
- Often unpredictable data dimensions resulting in more expensive computations

• Increasing number of real time data

- Network content download statistics for CDN systems
- 100 k new log entries / second
- Expected to grow exponentially very soon
- Often unpredictable data dimensions resulting in more expensive computations
- Requirement to track changes of statistics in seconds

• Increasing number of real time data

- Network content download statistics for CDN systems
- 100 k new log entries / second
- Expected to grow exponentially very soon
- Often unpredictable data dimensions resulting in more expensive computations
- Requirement to track changes of statistics in seconds
- Limited budget for statistics gathering with increasing demands

Increasing number of real time data

For Example

- Network content download statistics for CDN systems
- 100 k new log entries / second
- Expected to grow exponentially very soon
- Often unpredictable data dimensions resulting in more expensive computations
- Requirement to track changes of statistics in seconds
- Limited budget for statistics gathering with increasing demands

• Increasing number of real time data

For Example

- Network content download statistics for CDN systems
- 100 k new log entries / second
- Expected to grow exponentially very soon
- Often unpredictable data dimensions resulting in more expensive computations
- Requirement to track changes of statistics in seconds
- Limited budget for statistics gathering with increasing demands

For Example

Smaller machines favoured for big and expensive clusters

• Increasing number of real time data

For Example

- Network content download statistics for CDN systems
- 100 k new log entries / second
- Expected to grow exponentially very soon
- Often unpredictable data dimensions resulting in more expensive computations
- Requirement to track changes of statistics in seconds
- Limited budget for statistics gathering with increasing demands

- Smaller machines favoured for big and expensive clusters
- Why not use GPUs ?

1	DRAM												

NVIDIA, CUDA whitepapers

(Intel, NVIDIA specs.)

GPU needs dedicated programming

- GPU needs dedicated programming
 - CUDA is very close to C "low learning curve"

- GPU needs dedicated programming
 - CUDA is very close to C "low learning curve"
- Very few skilled developers

- GPU needs dedicated programming
 - CUDA is very close to C "low learning curve"
- Very few skilled developers
 - Tens thousands+ of developers and counting...

- GPU needs dedicated programming
 - CUDA is very close to C "low learning curve"
- Very few skilled developers
 - Tens thousands+ of developers and counting...
- Time consuming data copying from RAM to GPU

- GPU needs dedicated programming
 - CUDA is very close to C "low learning curve"
- Very few skilled developers
 - Tens thousands+ of developers and counting...
- Time consuming data copying from RAM to GPU
 - Ongoing research on direct I/O operations.

- GPU needs dedicated programming
 - CUDA is very close to C "low learning curve"
- Very few skilled developers
 - Tens thousands+ of developers and counting...
- Time consuming data copying from RAM to GPU
 - Ongoing research on direct I/O operations.
- Not all tasks may be implemented on GPU

- GPU needs dedicated programming
 - CUDA is very close to C "low learning curve"
- Very few skilled developers
 - Tens thousands+ of developers and counting...
- Time consuming data copying from RAM to GPU
 - Ongoing research on direct I/O operations.
- Not all tasks may be implemented on GPU
 - Yes, this is really hard. We need a good parallel, separable and efficient algorithm.

 Parallel primitives are good building blocks for robust and scalable parallel algorithms.

- Parallel primitives are good building blocks for robust and scalable parallel algorithms.
- They automatically use all available cores as efficiently as possible.

- Parallel primitives are good building blocks for robust and scalable parallel algorithms.
- They automatically use all available cores as efficiently as possible.
- In this paper we:

- Parallel primitives are good building blocks for robust and scalable parallel algorithms.
- They automatically use all available cores as efficiently as possible.
- In this paper we:
 - Describe massively parallel algorithm of MOLAP cube creation based on scan primitive

- Parallel primitives are good building blocks for robust and scalable parallel algorithms.
- They automatically use all available cores as efficiently as possible.
- In this paper we:
 - Describe massively parallel algorithm of MOLAP cube creation based on scan primitive
 - Evaluate its practical application

Prefix sums

Definition

The **scan** operation takes a binary associative operator \oplus , and an array of *n* elements [$x_0, x_1, \ldots, x_{n-1}$], and returns the array

$$[x_0, (x_0 \oplus x_1), \ldots, (x_0 \oplus x_1 \cdots \oplus x_{n-1})].$$

The **prescan** operation takes a binary associative operator \oplus with identity *I*, and an array of *n* elements $[x_0, x_1, \dots, x_{n-1}]$, and returns the array

$$[I, x_0, (x_0 \oplus x_1), \ldots, (x_0 \oplus x_1 \cdots \oplus x_{n-2})].$$

Prefix sums

Definition

The **scan** operation takes a binary associative operator \oplus , and an array of *n* elements [$x_0, x_1, \ldots, x_{n-1}$], and returns the array

$$[x_0, (x_0 \oplus x_1), \ldots, (x_0 \oplus x_1 \cdots \oplus x_{n-1})].$$

The **prescan** operation takes a binary associative operator \oplus with identity *I*, and an array of *n* elements $[x_0, x_1, \dots, x_{n-1}]$, and returns the array

$$[I, x_0, (x_0 \oplus x_1), \ldots, (x_0 \oplus x_1 \cdots \oplus x_{n-2})].$$

There are efficient CUDA based implementations with:

- step complexity O(log n)
- work complexity O(n)

There is also a version of scan for segments defined by flags:

There is also a version of scan for segments defined by flags:

А	6	3	4	8	1	2	4	2
F	1	0	1	0	0	0	0	1

There is also a version of scan for segments defined by flags:

А	6	3	4	8	1	2	4	2
F	1	0	1	0	0	0	0	1
seg-scan(A,F)	6	9	4	12	13	15	19	2

Applications of prefix sums primitive

- Computation of minimum, maximum, average, etc. of an array
- Lexical comparison of strings of characters
- Addition of multi-precision numbers that cannot be represented in a single machine word
- Evaluation of polynomials
- Solving of recurrence equations
- Radix sort
- Quick sort
- Solving tridiagonal linear systems
- Removal of marked elements from an array
- Dynamical allocation of processors
- Lexical analysis (parsing into tokens)
- Searching for regular expressions
- Implementation of some tree operations
- and many more...

Dense representation GPU optimised

	a_0	a_1	m_0
r_0	2008	10	23
r_1	2008	12	5
r_2	2008	12	43
r_3	2008	15	8
r_4	2009	15	90
r_5	2009	17	21
r6	2009	19	3
r_7	2009	19	3

Dense representation GPU optimised

	d0	d_1	m_0
r_0	2008	10	23
r_1	2008	12	5
r_2	2008	12	43
r_3	2008	15	8
r_4	2009	15	90
r_5	2009	17	21
r6	2009	19	3
r_7	2009	19	3

	2008	2009
10	23	0
1	0	0
12	48	0
13	0	0
4	0	0
15	8	90
16	0	0
17	0	21
18	0	0
19	0	6

Dense representation GPU optimised

	d0	d_1	m_0
r_0	2008	10	23
r_1	2008	12	5
r_2	2008	12	43
r_3	2008	15	8
r_4	2009	15	90
r_5	2009	17	21
r6	2009	19	3
r_7	2009	19	3

	2008	2009
0	23	0
1	0	0
2	48	0
3	0	0
4	0	0
5	8	90
6	0	0
7	0	21
8	0	0
9	0	6

0	23
2	48
5	8
15	90
17	21
19	6

h

	do	d 1	d_2	d_3	d_4	mo
r_0	2008	10	04	190	6	23
r_1	2008	10	04	190	6	5
r_2	2008	10	04	190	6	43
r_3	2008	10	04	190	6	8
r_4	2008	10	04	190	8	90
r_5	2008	10	04	190	8	21
r6	2008	10	05	164	4	3
r_7	2008	10	05	164	4	3

	do	dı	d_2	d_3	d_4	m_0	
r_0	2008	10	04	190	6	23	
r_1	2008	10	04	190	6	5	
r_2	2008	10	04	190	6	43	
r_3	2008	10	04	190	6	8	
r_4	2008	10	04	190	8	90	
r_5	2008	10	04	190	8	21	
r6	2008	10	05	164	4	3	
r_7	2008	10	05	164	4	3	

1
0
0
0
1
0
1
0

ps_f

1

3

	do	d 1	d_2	d_3	d_4	mo	f
r_0	2008	10	04	190	6	23	1
r_1	2008	10	04	190	6	5	0
r_2	2008	10	04	190	6	43	0
r_3	2008	10	04	190	6	8	0
r_4	2008	10	04	190	8	90	1
r_5	2008	10	04	190	8	21	0
r6	2008	10	05	164	4	3	1
r_7	2008	10	05	164	4	3	0

	do	d 1	d_2	d_3	d_4	mo	f	ps_f	
r_0	2008	10	04	190	6	23	1	0	
r_1	2008	10	04	190	6	5	0	1	
r_2	2008	10	04	190	6	43	0	1	
r_3	2008	10	04	190	6	8	0	1	
r_4	2008	10	04	190	8	90	1	1	
r_5	2008	10	04	190	8	21	0	2	
r6	2008	10	05	164	4	3	1	2	
r_7	2008	10	05	164	4	3	0	3	

79
56
51
8
111
21

6 3

iss fmo

	do	d 1	d_2	d_3	d_4	mo	f	ps_f	ss_{fm}	0	h	
r_0	2008	10	04	190	6	23	1	0	79		132	79
r_1	2008	10	04	190	6	5	0	1	56		134	111
r_2	2008	10	04	190	6	43	0	1	51		135	6
r_3	2008	10	04	190	6	8	0	1	8			
r_4	2008	10	04	190	8	90	1	1	111			
r_5	2008	10	04	190	8	21	0	2	21			
r6	2008	10	05	164	4	3	1	2	6			
r_7	2008	10	05	164	4	3	0	3	3			

 c_2

	h	c
c_0	132	79
c_1	134	111
c_2	135	6
c_3	137	15
c_4	190	98
c_5	196	4

	h	c	f
c_0	132	79	1
C1	134	111	0
C2	135	6	1
c_3	137	15	0
c_4	190	98	1
c_5	196	4	0

	h	c	f	p
<i>c</i> 0	132	79	1	79
c_1	134	111	0	6
c_2	135	6	1	98
c_3	137	15	0	
c_4	190	98	1	
c_5	196	4	0	

	h	c	f	p	r
<i>C</i> 0	132	79	1	79	98
c_1	134	111	0	6	
c_2	135	6	1	98	
c_3	137	15	0		
c_4	190	98	1		
c_5	196	4	0		

Results – Cube Creation Time

Processing time for 5, 10 and 15 dimensions.

Results – Good scalability

We achieved:

• Ultra-fast cube creation and querying.

- Ultra-fast cube creation and querying.
- Scalability much better than in classical CPU based implementations.

- Ultra-fast cube creation and querying.
- Scalability much better than in classical CPU based implementations.
- Very general solution due to common scan implementation.

- Ultra-fast cube creation and querying.
- Scalability much better than in classical CPU based implementations.
- Very general solution due to common scan implementation.
- Ability to incrementally modify existing cubes.

- Ultra-fast cube creation and querying.
- Scalability much better than in classical CPU based implementations.
- Very general solution due to common scan implementation.
- Ability to incrementally modify existing cubes.

We achieved:

- Ultra-fast cube creation and querying.
- Scalability much better than in classical CPU based implementations.
- Very general solution due to common scan implementation.
- Ability to incrementally modify existing cubes.

Problems:

Memory consumption

We achieved:

- Ultra-fast cube creation and querying.
- Scalability much better than in classical CPU based implementations.
- Very general solution due to common scan implementation.
- Ability to incrementally modify existing cubes.

Problems:

- Memory consumption
- cudpp library still under development (may speed up)

Reduce instead of scan → further speed-up

- Reduce instead of scan \rightarrow further speed-up
- Query Engine Improvement

- Reduce instead of scan → further speed-up
- Query Engine Improvement
 - A new query language designed for vector processing

- Reduce instead of scan → further speed-up
- Query Engine Improvement
 - A new query language designed for vector processing
- Multiple GPU device implementation \rightarrow horizontal data distribution

Thank you.