
OPTIMIZATION OF RECURSIVE QUERIES

Tomasz Pieciukiewicz

AGENDA

 Optimization of transitive closures

 Factoring out independent subqueries

 Pushing out selections

 Optimization of fixpoint systems

 Stratified evaluation

 Factoring out independent subqueries

 Pushing out selections

Detection of non-recursive equations

 Combined techniques

OPTIMIZATION OF TRANSITIVE CLOSURES

OPTIMIZATION OF TRANSITIVE CLOSURES

 Factoring out independent subqueries

 Possible to use with any non-algebraic operator,

transitive closure is not an exception

FACTORING OUT - EXAMPLE

 (Activity where name = ”Planning”)

close by

(outgoing.Transition.leadsTo.Activity where

maxTime<avg(Activity.maxTime))

 (avg(Activity.maxTime) as x).((Activity where

name = ”Planning”)

close by

(outgoing.Transition.leadsTo.Activity where

maxTime<x))

OPTIMIZATION OF TRANSITIVE CLOSURES

 Pushing out selections in front of an operator

 Possible to use with distributive non-algebraic

operators

 close unique by and leaves unique by are NOT

distributive

 close by and leaves by are distributive

PUSHING OUT - EXAMPLE

 Car.Components.Part
close by

Component.leadsTo.Part
where

model = “Testarossa”

 (Car where
model = “Testarossa”).Components.Part

close by
Component.leadsTo.Part

OPTIMIZATION OF FIXPOINT SYSTEMS

OPTIMIZATION OF FIXPOINT SYSTEMS

 Stratified evaluation

 Semi-naive evaluation technique

Divide fixpoint system into strata, evaluate them in

sequence

 Assignment of equations to strata based on

referenced variable names

OPTIMIZATION OF FIXPOINT SYSTEMS

 Identification of strata using Kosaraju algorithm for

identification of Strongly Connected Components of

a graph

Vertices represent equations

Edges represent variable references

 If equation e1 uses a variable defined by equation e2, graph

contains edge from vertice e1 to vertice e2

OPTIMIZATION OF FIXPOINT SYSTEMS

 fixpoint {

 engine : struct{Part,integer} :=(Part where
name="engine") as x, 1 as howMany;

 engineParts : struct{Part,integer}[1..*] := engine
union

(engineParts.Component.((leadsTo.Part) as x,
(amount*howMany) as howMany);

 final s : struct{Part,integer}[1..*] :=
((distinct(engineParts.x) as y).

(y,sum(engineParts where x=y).howMany));

 }

OPTIMIZATION OF FIXPOINT SYSTEMS

engine : struct{Part,integer} :=(Part where name="engine") as x, 1 as howMany;

engineParts : struct{Part,integer}[1..*] := engine union

 (engineParts.Component.((leadsTo.Part) as x,

 (amount*howMany) as howMany);

final s : struct{Part,integer}[1..*] := ((distinct(engineParts.x) as y).

 (y,sum(engineParts where x=y).howMany));

OPTIMIZATION OF FIXPOINT SYSTEMS

 Factoring out independent subqueries

We may optimize individual equations as usual

We may also treat the entire equation system as a

non-algebraic operator! (see sbql.pl)

As a consequence, we may try to factor out an

independent subquery in front of the fixpoint system

DATALOG MAGIC SETS

 identify selections within recursion, which may

be evaluated only once (“magic predicates”)

 assign names to those selections, replace

selections within recursion with call to the

newly assigned names

 evaluate those selections before going into

recursion

 Does it look familiar?

OPTIMIZATION OF FIXPOINT SYSTEMS

 fixpoint {

 engine : struct{Part,integer} =(Part where
name="engine") as x, 1 as howMany;

 engineParts : struct{Part,integer}[1..*] = engine union
(engineParts.Component.((leadsTo.Part) as x,
(amount*howMany) as howMany) where
howMany>avg(Part.amount);

 final s : struct{Part,integer}[1..*] =
((distinct(engineParts.x) as y).
(y,sum(engineParts where x=y).howMany));

 }

OPTIMIZATION OF FIXPOINT SYSTEMS

 (avg(Part.amount) as t).fixpoint {

 engine : struct{Part,integer} :=(Part where

name="engine") as x, 1 as howMany;

 engineParts : struct{Part,integer}[1..*] := engine union

(engineParts.Component.((leadsTo.Part) as x,

(amount*howMany) as howMany) where

howMany>t;

 final s : struct{Part,integer}[1..*] :=

((distinct(engineParts.x) as y).

(y,sum(engineParts where x=y).howMany));

 }

OPTIMIZATION OF FIXPOINT SYSTEMS

 Pushing out selections

Only optimization of individual equations is possible

 The semantic equivalence between fixpoint system

and (non-distributive) leaves unique by operator by

makes the use of this technique impossible

OPTIMIZATION OF FIXPOINT SYSTEMS

 Non-recursive equations within fixpoint systems

 Some equations will return the same result in every

evaluation

 Usually they'll be evaluated twice – but why bother?

 Is it possible to easily identify them and evaluate them

only once?

OPTIMIZATION OF FIXPOINT SYSTEMS

 If an equation references its own results from previous iteration – by
using its name – it will of course have to be evaluated recursively

 If an equation references the results of another equation, we have
two possibilities:

 the equation references another equation from the same stratum – in
this case it will have to be evaluated recursively, as the results of the
referenced equation may change in subsequent iterations

 the equation references only equations from previously evaluated strata
– in this case the information required to evaluate the equation is
available in the first evaluation, no recursive evaluation is necessary

 by definition, it is impossible for an equation to reference equation
variable calculated in a stratum further in the evaluation order

OPTIMIZATION OF FIXPOINT SYSTEMS

 This means, that an equation needs to be

evaluated only once if it satisfies the following

conditions:

 it does not reference itself

 it does not reference other equations in the same

stratum

OPTIMIZATION OF FIXPOINT SYSTEMS

 fixpoint {

 engine : struct{Part,integer} :=(Part where name="engine") as x, 1 as
howMany;

 allParts : struct{Part,integer}[1..*] := engine union
(allParts.Component.((leadsTo.Part) as x,
(amount*howMany) as howMany) ;

 engineParts : struct{Part,integer}[1..*] := engine union
(engineParts.Component.((leadsTo.Part) as x,
(amount*howMany) as howMany) where

howMany<avg(allParts.howMany);

 final s : struct{Part,integer}[1..*] := ((distinct(engineParts.x) as y).
(y,sum(engineParts where x=y).howMany));

 }

OPTIMIZATION OF FIXPOINT SYSTEMS

 Combined techniques

 A subquery that's not independent of the fixpoint system

may be independent in the context of a particular stratum

 We can't factor it out in front of the equation

 But we can factor it out in front of the stratum!

OPTIMIZATION OF FIXPOINT SYSTEMS

 fixpoint {

 engine : struct{Part,integer} :=(Part where name="engine") as x, 1 as
howMany;

 allParts : struct{Part,integer}[1..*] := engine union
(allParts.Component.((leadsTo.Part) as x,
(amount*howMany) as howMany) ;

 engineParts : struct{Part,integer}[1..*] := engine union
(engineParts.Component.((leadsTo.Part) as x,
(amount*howMany) as howMany) where
howMany<avg(allParts.howMany);

 final s : struct{Part,integer}[1..*] := ((distinct(engineParts.x) as y).
(y,sum(engineParts where x=y).howMany));

 }

OPTIMIZATION OF FIXPOINT SYSTEMS

 fixpoint {

 engine : struct{Part,integer} :=(Part where name="engine") as x, 1 as
howMany;

 allParts : struct{Part,integer}[1..*] := engine union
(allParts.Component.((leadsTo.Part) as x,
(amount*howMany) as howMany) ;

 avg(allParts.howMany) as t;

 engineParts : struct{Part,integer}[1..*] := engine union
(engineParts.Component.((leadsTo.Part) as x,
(amount*howMany) as howMany) where
howMany<t;

 final s : struct{Part,integer}[1..*] := ((distinct(engineParts.x) as y).
(y,sum(engineParts where x=y).howMany));

 }

CONCLUSIONS

CONCLUSIONS

 Query rewriting techniques may be used for

recursive queries

 Although the use of pushing out selections is

limited

 Stratification itself is useful

 And it leads to further optimization possibilities

 There's no magic in "Magic sets"

 Beyond the math used to describe them…

Questions?

THANK YOU

