Tomasz Pieciukiewicz

OPTIMIZATION OF RECURSIVE QUERIES



AGENDA

Optimization of transitive closures
Factoring out independent subqueries
Pushing out selections

Optimization of fixpoint systems
Stratified evaluation

Factoring out independent subqueries

Pushing out selections

Detection of non-recursive equations

Combined techniques




OPTIMIZATION OF TRANSITIVE CLOSURES




OPTIMIZATION OF TRANSITIVE CLOSURES

Factoring out independent subqueries

Possible to use with any non-algebraic operator,
transitive closure is not an exception



FACTORING OUT - EXAMPLE

(Activity where name = "Planning”)
close by
(outgoing.Transition.leadsTo.Activity where
maxTime<avg(Activity.maxTime))

(avg(Activity.maxTime) as X).((Activity where
name = "Planning”)
close by
(outgoing.Transition.leadsTo.Activity where
maxTime<x))



OPTIMIZATION OF TRANSITIVE CLOSURES

Pushing out selections in front of an operator

Possible to use with distributive non-algebraic
operators

close unique by and leaves unique by are NOT
distributive

close by and leaves by are distributive



PUSHING OUT - EXAMPLE

Car.Components.Part
close by
Component.leadsTo.Part
where
model = “Iestarossa’

(Car where

model = “Testarossa”).Components.Part
close by

Component.leadsTo.Part



OPTIMIZATION OF FIXPOINT SYSTEMS




OPTIMIZATION OF FIXPOINT SYSTEMS

Stratified evaluation
Semi-naive evaluation technique

Divide fixpoint system into strata, evaluate them in
seguence

Assignment of equations to strata based on
referenced variable names



OPTIMIZATION OF FIXPOINT SYSTEMS

|dentification of strata using Kosaraju algorithm for
identification of Strongly Connected Components of
a graph

Vertices represent equations

Edges represent variable references

If equation el uses a variable defined by equation e2, graph
contains edge from vertice el to vertice e2



OPTIMIZATION OF FIXPOINT SYSTEMS

fixpoint {

engine : struct{Part,integer} :=(Part where
name="engine") as x, 1 as howMany,
engineParts : struct{Part,integer}[1..*] := engine
union

(engineParts.Component.((leadsTo.Part) as X,
(@amount*howMany) as howMany);

final s . struct{Part,integer}[1..*] =
((distinct(engineParts.x) as y).

(v,sum(engineParts where x=y).howMany));
}



OPTIMIZATION OF FIXPOINT SYSTEMS

engine : struct{Part,integer} :=(Part where name="engine") as x, 1 as howMany;

engineParts : struct{Part,integer}[1..*] := engine union
(engineParts.Component.((leadsTo.Part) as x,

(amount*howMany) as howMany);

final s : struct{Part,integer}[1..*] := ((distinct(engineParts.x) as y).

(v,sum(engineParts where x=y).howMany));



OPTIMIZATION OF FIXPOINT SYSTEMS

Factoring out independent subqueries
We may optimize individual equations as usual

We may also treat the entire equation system as a
non-algebraic operator! (see sbql.pl)

As a consequence, we may try to factor out an
independent subquery in front of the fixpoint system



DATALOG MAGIC SETS

identify selections within recursion, which may
be evaluated only once (“magic predicates™)

assign names to those selections, replace
selections within recursion with call to the
newly assigned names

evaluate those selections before going into
recursion

Does it look familiar?



OPTIMIZATION OF FIXPOINT SYSTEMS

fixpoint {

engine : struct{Part,integer} =(Part where
name="engine") as x, 1 as howMany;

engineParts : struct{Part,integer}[1..*] = engine union
(engineParts.Component.((leadsTo.Part) as x,
(@amount*howMany) as howMany) where
howMany>avg(Part.amount);

final s : struct{Part,integer}[1..*] =
((distinct(engineParts.x) as y).
(v,sum(engineParts where x=y).howMany));



OPTIMIZATION OF FIXPOINT SYSTEMS

(avg(Part.amount) as t).fixpoint {

engine : struct{Part,integer} :=(Part where
name="engine") as x, 1 as howMany;

engineParts : struct{Part,integer}[1..*] := engine union
(engineParts.Component.((leadsTo.Part) as X,
(@amount*howMany) as howMany) where
howMany>t;

final s : struct{Part,integer}[1..*] :=
((distinct(engineParts.x) as y).
(y,sum(engineParts where x=y).howMany));

}



OPTIMIZATION OF FIXPOINT SYSTEMS

Pushing out selections
Only optimization of individual equations is possible

The semantic equivalence between fixpoint system
and (non-distributive) leaves unique by operator by
makes the use of this technique impossible



OPTIMIZATION OF FIXPOINT SYSTEMS

Non-recursive equations within fixpoint systems

Some equations will return the same result in every
evaluation
Usually they'll be evaluated twice - but why bother?

Is it possible to easily identify them and evaluate them
only once?



OPTIMIZATION OF FIXPOINT SYSTEMS

If an equation references its own results from previous iteration - by
using its name - it will of course have to be evaluated recursively

If an equation references the results of another equation, we have
two possibilities:

the equation references another equation from the same stratum - in
this case it will have to be evaluated recursively, as the results of the
referenced equation may change in subsequent iterations

the equation references only equations from previously evaluated strata
— in this case the information required to evaluate the equation is
available in the first evaluation, no recursive evaluation is hecessary

by definition, it is impossible for an equation to reference equation
variable calculated in a stratum further in the evaluation order



OPTIMIZATION OF FIXPOINT SYSTEMS

This means, that an equation needs to be
evaluated only once if it satisfies the following
conditions:

it does not reference itself

it does not reference other equations in the same
stratum



OPTIMIZATION OF FIXPOINT SYSTEMS

fixpoint {

engine : struct{Part,integer} :=(Part where name="engine") as x, 1 as
howMany;

allParts : struct{Part,integer}[1..*] := engine union
(allParts.Component.((leadsTo.Part) as x,
(@amount*howMany) as howMany) ;

engineParts : struct{Part,integer}[1..*] := engine union
(engineParts.Component.((leadsTo.Part) as Xx,

(@amount*howMany) as howMany) where
howMany<avg(allParts.howMany);

final s : struct{Part,integer}[1..*] := ((distinct(engineParts.x) as y).
(v,sum(engineParts where x=y).howMany));

}



OPTIMIZATION OF FIXPOINT SYSTEMS

Combined techniques

A subquery that's not independent of the fixpoint system
may be independent in the context of a particular stratum

We can't factor it out in front of the equation
But we can factor it out in front of the stratum!



OPTIMIZATION OF FIXPOINT SYSTEMS

fixpoint {

engine : struct{Part,integer} :=(Part where name="engine") as x, 1 as
howMany;

allParts : struct{Part,integer}[1..*] := engine union
(allParts.Component.((leadsTo.Part) as x,
(a@amount*howMany) as howMany) ;

engineParts : struct{Part,integer}[1..*] := engine union
(engineParts.Component.((leadsTo.Part) as X,

(a@amount*howMany) as howMany) where
howMany<avg(allParts.howMany);

final s : struct{Part,integer}[1..*] := ((distinct(engineParts.x) as y).
(v,sum(engineParts where x=y).howMany));
}



OPTIMIZATION OF FIXPOINT SYSTEMS

fixpoint {

engine : struct{Part,integer} :=(Part where name="engine") as x, 1 as
howMany;

allParts : struct{Part,integer}[1..*] := engine union
(allParts.Component.((leadsTo.Part) as x,
(a@amount*howMany) as howMany) ;

avg(allParts.howMany) as t;

engineParts : struct{Part,integer}[1..*] := engine union
(engineParts.Component.((leadsTo.Part) as X,
(@amount*howMany) as howMany) where
howMany<t;

final s : struct{Part,integer}[1..*] := ((distinct(engineParts.x) as y).
(y,sum(engineParts where x=y).howMany));
}



CONCLUSIONS




CONCLUSIONS

Query rewriting techniques may be used for
recursive queries

Although the use of pushing out selections is
limited

Stratification itself is useful
And it leads to further optimization possibilities

There's no magic in "Magic sets”
Beyond the math used to describe them...



Questions?

THANK YOU




