
OPTIMIZATION OF RECURSIVE QUERIES

Tomasz Pieciukiewicz

AGENDA

 Optimization of transitive closures

 Factoring out independent subqueries

 Pushing out selections

 Optimization of fixpoint systems

 Stratified evaluation

 Factoring out independent subqueries

 Pushing out selections

Detection of non-recursive equations

 Combined techniques

OPTIMIZATION OF TRANSITIVE CLOSURES

OPTIMIZATION OF TRANSITIVE CLOSURES

 Factoring out independent subqueries

 Possible to use with any non-algebraic operator,

transitive closure is not an exception

FACTORING OUT - EXAMPLE

 (Activity where name = ”Planning”)

close by

(outgoing.Transition.leadsTo.Activity where

maxTime<avg(Activity.maxTime))

 (avg(Activity.maxTime) as x).((Activity where

name = ”Planning”)

close by

(outgoing.Transition.leadsTo.Activity where

maxTime<x))

OPTIMIZATION OF TRANSITIVE CLOSURES

 Pushing out selections in front of an operator

 Possible to use with distributive non-algebraic

operators

 close unique by and leaves unique by are NOT

distributive

 close by and leaves by are distributive

PUSHING OUT - EXAMPLE

 Car.Components.Part
close by

Component.leadsTo.Part
where

model = “Testarossa”

 (Car where
model = “Testarossa”).Components.Part

close by
Component.leadsTo.Part

OPTIMIZATION OF FIXPOINT SYSTEMS

OPTIMIZATION OF FIXPOINT SYSTEMS

 Stratified evaluation

 Semi-naive evaluation technique

Divide fixpoint system into strata, evaluate them in

sequence

 Assignment of equations to strata based on

referenced variable names

OPTIMIZATION OF FIXPOINT SYSTEMS

 Identification of strata using Kosaraju algorithm for

identification of Strongly Connected Components of

a graph

Vertices represent equations

Edges represent variable references

 If equation e1 uses a variable defined by equation e2, graph

contains edge from vertice e1 to vertice e2

OPTIMIZATION OF FIXPOINT SYSTEMS

 fixpoint {

 engine : struct{Part,integer} :=(Part where
name="engine") as x, 1 as howMany;

 engineParts : struct{Part,integer}[1..*] := engine
union

(engineParts.Component.((leadsTo.Part) as x,
(amount*howMany) as howMany);

 final s : struct{Part,integer}[1..*] :=
((distinct(engineParts.x) as y).

(y,sum(engineParts where x=y).howMany));

 }

OPTIMIZATION OF FIXPOINT SYSTEMS

engine : struct{Part,integer} :=(Part where name="engine") as x, 1 as howMany;

engineParts : struct{Part,integer}[1..*] := engine union

 (engineParts.Component.((leadsTo.Part) as x,

 (amount*howMany) as howMany);

final s : struct{Part,integer}[1..*] := ((distinct(engineParts.x) as y).

 (y,sum(engineParts where x=y).howMany));

OPTIMIZATION OF FIXPOINT SYSTEMS

 Factoring out independent subqueries

We may optimize individual equations as usual

We may also treat the entire equation system as a

non-algebraic operator! (see sbql.pl)

As a consequence, we may try to factor out an

independent subquery in front of the fixpoint system

DATALOG MAGIC SETS

 identify selections within recursion, which may

be evaluated only once (“magic predicates”)

 assign names to those selections, replace

selections within recursion with call to the

newly assigned names

 evaluate those selections before going into

recursion

 Does it look familiar?

OPTIMIZATION OF FIXPOINT SYSTEMS

 fixpoint {

 engine : struct{Part,integer} =(Part where
name="engine") as x, 1 as howMany;

 engineParts : struct{Part,integer}[1..*] = engine union
(engineParts.Component.((leadsTo.Part) as x,
(amount*howMany) as howMany) where
howMany>avg(Part.amount);

 final s : struct{Part,integer}[1..*] =
((distinct(engineParts.x) as y).
(y,sum(engineParts where x=y).howMany));

 }

OPTIMIZATION OF FIXPOINT SYSTEMS

 (avg(Part.amount) as t).fixpoint {

 engine : struct{Part,integer} :=(Part where

name="engine") as x, 1 as howMany;

 engineParts : struct{Part,integer}[1..*] := engine union

(engineParts.Component.((leadsTo.Part) as x,

(amount*howMany) as howMany) where

howMany>t;

 final s : struct{Part,integer}[1..*] :=

((distinct(engineParts.x) as y).

(y,sum(engineParts where x=y).howMany));

 }

OPTIMIZATION OF FIXPOINT SYSTEMS

 Pushing out selections

Only optimization of individual equations is possible

 The semantic equivalence between fixpoint system

and (non-distributive) leaves unique by operator by

makes the use of this technique impossible

OPTIMIZATION OF FIXPOINT SYSTEMS

 Non-recursive equations within fixpoint systems

 Some equations will return the same result in every

evaluation

 Usually they'll be evaluated twice – but why bother?

 Is it possible to easily identify them and evaluate them

only once?

OPTIMIZATION OF FIXPOINT SYSTEMS

 If an equation references its own results from previous iteration – by
using its name – it will of course have to be evaluated recursively

 If an equation references the results of another equation, we have
two possibilities:

 the equation references another equation from the same stratum – in
this case it will have to be evaluated recursively, as the results of the
referenced equation may change in subsequent iterations

 the equation references only equations from previously evaluated strata
– in this case the information required to evaluate the equation is
available in the first evaluation, no recursive evaluation is necessary

 by definition, it is impossible for an equation to reference equation
variable calculated in a stratum further in the evaluation order

OPTIMIZATION OF FIXPOINT SYSTEMS

 This means, that an equation needs to be

evaluated only once if it satisfies the following

conditions:

 it does not reference itself

 it does not reference other equations in the same

stratum

OPTIMIZATION OF FIXPOINT SYSTEMS

 fixpoint {

 engine : struct{Part,integer} :=(Part where name="engine") as x, 1 as
howMany;

 allParts : struct{Part,integer}[1..*] := engine union
(allParts.Component.((leadsTo.Part) as x,
(amount*howMany) as howMany) ;

 engineParts : struct{Part,integer}[1..*] := engine union
(engineParts.Component.((leadsTo.Part) as x,
(amount*howMany) as howMany) where

howMany<avg(allParts.howMany);

 final s : struct{Part,integer}[1..*] := ((distinct(engineParts.x) as y).
(y,sum(engineParts where x=y).howMany));

 }

OPTIMIZATION OF FIXPOINT SYSTEMS

 Combined techniques

 A subquery that's not independent of the fixpoint system

may be independent in the context of a particular stratum

 We can't factor it out in front of the equation

 But we can factor it out in front of the stratum!

OPTIMIZATION OF FIXPOINT SYSTEMS

 fixpoint {

 engine : struct{Part,integer} :=(Part where name="engine") as x, 1 as
howMany;

 allParts : struct{Part,integer}[1..*] := engine union
(allParts.Component.((leadsTo.Part) as x,
(amount*howMany) as howMany) ;

 engineParts : struct{Part,integer}[1..*] := engine union
(engineParts.Component.((leadsTo.Part) as x,
(amount*howMany) as howMany) where
howMany<avg(allParts.howMany);

 final s : struct{Part,integer}[1..*] := ((distinct(engineParts.x) as y).
(y,sum(engineParts where x=y).howMany));

 }

OPTIMIZATION OF FIXPOINT SYSTEMS

 fixpoint {

 engine : struct{Part,integer} :=(Part where name="engine") as x, 1 as
howMany;

 allParts : struct{Part,integer}[1..*] := engine union
(allParts.Component.((leadsTo.Part) as x,
(amount*howMany) as howMany) ;

 avg(allParts.howMany) as t;

 engineParts : struct{Part,integer}[1..*] := engine union
(engineParts.Component.((leadsTo.Part) as x,
(amount*howMany) as howMany) where
howMany<t;

 final s : struct{Part,integer}[1..*] := ((distinct(engineParts.x) as y).
(y,sum(engineParts where x=y).howMany));

 }

CONCLUSIONS

CONCLUSIONS

 Query rewriting techniques may be used for

recursive queries

 Although the use of pushing out selections is

limited

 Stratification itself is useful

 And it leads to further optimization possibilities

 There's no magic in "Magic sets"

 Beyond the math used to describe them…

Questions?

THANK YOU

